Automatic Exudate Detection from Non-dilated Diabetic Retinopathy Retinal Images Using Fuzzy C-means Clustering

نویسندگان

  • Akara Sopharak
  • Bunyarit Uyyanonvara
  • Sarah Barman
چکیده

Exudates are the primary sign of Diabetic Retinopathy. Early detection can potentially reduce the risk of blindness. An automatic method to detect exudates from low-contrast digital images of retinopathy patients with non-dilated pupils using a Fuzzy C-Means (FCM) clustering is proposed. Contrast enhancement preprocessing is applied before four features, namely intensity, standard deviation on intensity, hue and a number of edge pixels, are extracted to supply as input parameters to coarse segmentation using FCM clustering method. The first result is then fine-tuned with morphological techniques. The detection results are validated by comparing with expert ophthalmologists' hand-drawn ground-truths. Sensitivity, specificity, positive predictive value (PPV), positive likelihood ratio (PLR) and accuracy are used to evaluate overall performance. It is found that the proposed method detects exudates successfully with sensitivity, specificity, PPV, PLR and accuracy of 87.28%, 99.24%, 42.77%, 224.26 and 99.11%, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Exudates Detection from Non-dilated Diabetic Retinopathy Retinal Image Using Fuzzy C-means Clustering

Exudates are the primary signs of diabetic retinopathy which are mainly cause of blindness. It could be prevented with an early screening process. Pupil dilation is required in the normal screening process but this affects patients’ vision. Automatic computerized screening should facilitate screening process, reduce inspection time and increase accuracy. In this paper we proposed an automatic m...

متن کامل

Computerized Exudate Detection in Fundus Images Using Statistical Feature based Fuzzy C-mean Clustering

Diabetic retinopathy(DR) is considered as the root cause of vision loss for diabetic patients .One of the greatest concern and immediate challenges to the current health care is the severe progression of diabetes. Diabetic retinopathy is an eye disease and appearance of hard exudates is one of its earliest signs. The accuracy of the automated disease identification techniques should be high .Be...

متن کامل

A Study and Comparison of Automated Techniques for Exudate Detection Using Digital Fundus Images of Human Eye: A Review for Early Identification of Diabetic Retinopathy

Exudates are a visible sign of diabetic retinopathy which is the major cause of blindness in patients with diabetes. If the exudates extend into the macular area, vision loss can occur. Automated early detection of the presence of exudates can assist ophthalmologists to prevent the spread of the disease more efficiently. Hence, detection of exudates is an important diagnostic task. Exudates are...

متن کامل

Morphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal

Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...

متن کامل

Automated identification of diabetic retinal exudates in digital colour images.

AIM To identify retinal exudates automatically from colour retinal images. METHODS The colour retinal images were segmented using fuzzy C-means clustering following some key preprocessing steps. To classify the segmented regions into exudates and non-exudates, an artificial neural network classifier was investigated. RESULTS The proposed system can achieve a diagnostic accuracy with 95.0% s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009